Construction methods and materials may be chosen to suit the pressure application, and will depend on the size of the vessel, the contents, working pressure, mass constraints, and the number of items required.
Pressure vessels can be dangerous, and fatal accidents have occurred in the history of their development and operation. Consequently, pressure vessel design, manufacture, and operation are regulated by engineering authorities backed by legislation. For these reasons, the definition of a pressure vessel varies from country to country.
compress pressure vessel design software free 14
Design involves parameters such as maximum safe operating pressure and temperature, safety factor, corrosion allowance and minimum design temperature (for brittle fracture). Construction is tested using nondestructive testing, such as ultrasonic testing, radiography, and pressure tests. Hydrostatic pressure tests usually use water, but pneumatic tests use air or another gas. Hydrostatic testing is preferred, because it is a safer method, as much less energy is released if a fracture occurs during the test (water does not greatly increase its volume when rapid depressurization occurs, unlike gases, which expand explosively). Mass or batch production products will often have a representative sample tested to destruction in controlled conditions for quality assurance. Pressure relief devices may be fitted if the overall safety of the system is sufficiently enhanced.
In most countries, vessels over a certain size and pressure must be built to a formal code. In the United States that code is the ASME Boiler and Pressure Vessel Code (BPVC). In Europe the code is the Pressure Equipment Directive. Information on this page is mostly valid in ASME only.[clarification needed] These vessels also require an authorized inspector to sign off on every new vessel constructed and each vessel has a nameplate with pertinent information about the vessel, such as maximum allowable working pressure, maximum temperature, minimum design metal temperature, what company manufactured it, the date, its registration number (through the National Board), and American Society of Mechanical Engineers's official stamp for pressure vessels (U-stamp). The nameplate makes the vessel traceable and officially an ASME Code vessel.
The earliest documented design of pressure vessels was described in 1495 in the book by Leonardo da Vinci, the Codex Madrid I, in which containers of pressurized air were theorized to lift heavy weights underwater.[1] However, vessels resembling those used today did not come about until the 1800s, when steam was generated in boilers helping to spur the industrial revolution.[1] However, with poor material quality and manufacturing techniques along with improper knowledge of design, operation and maintenance there was a large number of damaging and often Deathly explosions associated with these boilers and pressure vessels, with a death occurring on a nearly daily basis in the United States.[1] Local provinces and states in the US began enacting rules for constructing these vessels after some particularly devastating vessel failures occurred killing dozens of people at a time, which made it difficult for manufacturers to keep up with the varied rules from one location to another. The first pressure vessel code was developed starting in 1911 and released in 1914, starting the ASME Boiler and Pressure Vessel Code (BPVC).[1] In an early effort to design a tank capable of withstanding pressures up to 10,000 psi (69 MPa), a 6-inch (150 mm) diameter tank was developed in 1919 that was spirally-wound with two layers of high tensile strength steel wire to prevent sidewall rupture, and the end caps longitudinally reinforced with lengthwise high-tensile rods.[2] The need for high pressure and temperature vessels for petroleum refineries and chemical plants gave rise to vessels joined with welding instead of rivets (which were unsuitable for the pressures and temperatures required) and in the 1920s and 1930s the BPVC included welding as an acceptable means of construction; welding is the main means of joining metal vessels today.[1]
There have been many advancements in the field of pressure vessel engineering such as advanced non-destructive examination, phased array ultrasonic testing and radiography, new material grades with increased corrosion resistance and stronger materials, and new ways to join materials such as explosion welding, friction stir welding, advanced theories and means of more accurately assessing the stresses encountered in vessels such as with the use of Finite Element Analysis, allowing the vessels to be built safer and more efficiently. Today, vessels in the USA require BPVC stamping but the BPVC is not just a domestic code, many other countries have adopted the BPVC as their official code. There are, however, other official codes in some countries, such as Japan, Australia, Canada, Britain, and Europe. Regardless of the country, nearly all recognize the inherent potential hazards of pressure vessels and the need for standards and codes regulating their design and construction.
Pressure vessels can theoretically be almost any shape, but shapes made of sections of spheres, cylinders, and cones are usually employed. A common design is a cylinder with end caps called heads. Head shapes are frequently either hemispherical or dished (torispherical). More complicated shapes have historically been much harder to analyze for safe operation and are usually far more difficult to construct.
Theoretically, a spherical pressure vessel has approximately twice the strength of a cylindrical pressure vessel with the same wall thickness,[3] and is the ideal shape to hold internal pressure.[1] However, a spherical shape is difficult to manufacture, and therefore more expensive, so most pressure vessels are cylindrical with 2:1 semi-elliptical heads or end caps on each end. Smaller pressure vessels are assembled from a pipe and two covers. For cylindrical vessels with a diameter up to 600 mm (NPS of 24 in), it is possible to use seamless pipe for the shell, thus avoiding many inspection and testing issues, mainly the nondestructive examination of radiography for the long seam if required. A disadvantage of these vessels is that greater diameters are more expensive, so that for example the most economic shape of a 1,000 litres (35 cu ft), 250 bars (3,600 psi) pressure vessel might be a diameter of 91.44 centimetres (36 in) and a length of 1.7018 metres (67 in) including the 2:1 semi-elliptical domed end caps.
Many pressure vessels are made of steel. To manufacture a cylindrical or spherical pressure vessel, rolled and possibly forged parts would have to be welded together. Some mechanical properties of steel, achieved by rolling or forging, could be adversely affected by welding, unless special precautions are taken. In addition to adequate mechanical strength, current standards dictate the use of steel with a high impact resistance, especially for vessels used in low temperatures. In applications where carbon steel would suffer corrosion, special corrosion resistant material should also be used.
Some pressure vessels are made of composite materials, such as filament wound composite using carbon fibre held in place with a polymer. Due to the very high tensile strength of carbon fibre these vessels can be very light, but are much more difficult to manufacture. The composite material may be wound around a metal liner, forming a composite overwrapped pressure vessel.
Pressure vessels may be lined with various metals, ceramics, or polymers to prevent leaking and protect the structure of the vessel from the contained medium. This liner may also carry a significant portion of the pressure load.[4][5]
Pressure Vessels may also be constructed from concrete (PCV) or other materials which are weak in tension. Cabling, wrapped around the vessel or within the wall or the vessel itself, provides the necessary tension to resist the internal pressure. A "leakproof steel thin membrane" lines the internal wall of the vessel. Such vessels can be assembled from modular pieces and so have "no inherent size limitations".[6] There is also a high order of redundancy thanks to the large number of individual cables resisting the internal pressure.
The very small vessels used to make liquid butane fueled cigarette lighters are subjected to about 2 bar pressure, depending on ambient temperature. These vessels are often oval (1 x 2 cm ... 1.3 x 2.5 cm) in cross section but sometimes circular. The oval versions generally include one or two internal tension struts which appear to be baffles but which also provide additional cylinder strength.
The typical circular-cylindrical high pressure gas cylinders for permanent gases (that do not liquify at storing pressure, like air, oxygen, nitrogen, hydrogen, argon, helium) have been manufactured by hot forging by pressing and rolling to get a seamless steel vessel.
A tapered thread provides simple assembly, but requires high torque for connecting and leads to high radial forces in the vessel neck. All cylinders built for 300 bar (4,400 psi) working pressure, all diving cylinders, and all composite cylinders use parallel threads.
Leak before burst describes a pressure vessel designed such that a crack in the vessel will grow through the wall, allowing the contained fluid to escape and reducing the pressure, prior to growing so large as to cause fracture at the operating pressure.
Many pressure vessel standards, including the ASME Boiler and Pressure Vessel Code[14] and the AIAA metallic pressure vessel standard, either require pressure vessel designs to be leak before burst, or require pressure vessels to meet more stringent requirements for fatigue and fracture if they are not shown to be leak before burst.[15]
Pressure vessel closures are pressure retaining structures designed to provide quick access to pipelines, pressure vessels, pig traps, filters and filtration systems. Typically pressure vessel closures allow access by maintenance personnel.A commonly used access hole shape is elliptical, which allows the closure to be passed through the opening, and rotated into the working position, and is held in place by a bar on the outside, secured by a central bolt. The internal pressure prevents it from being inadvertently opened under load. 2ff7e9595c
コメント